# **155Gd M6ssbauer effect and magnetic properties of Al-substituted**   $Gd<sub>2</sub>Fe<sub>17</sub>$

F. M. Mulder and R. C. Thiel

*Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden (Netherlands)* 

T. H. Jacobs\* and K. H. J. Buschow

*Philips Research Laboratories, 5600 JA Eindhoven (Netherlands)* 

(Received December 2, 1992)

# **Abstract**

We have investigated the effect of AI substitution on the magnetic properties and the <sup>155</sup>Gd Mössbauer spectra of  $Gd_2Fe_{17-x}Al_x$ . Marked changes were observed in the values of the electric field gradient derived from the quadrupole splitting of the spectra, the effective Gd hyperfine field and the isomer shift. The implications of the sign reversal of the electric field gradient on the crystal field-induced magnetic anisotropy is discussed. The variation in the hyperfine field across the series has been attributed to a gradual reduction in the transferred hyperfine field, owing to the Fe moments. The variation in the isomer shift was shown to be in agreement with model predictions.

# **I. Introduction**

Rare-earth-Fe compounds of the type  $R_2Fe_{17}$  have been known to be amenable to substantial substitution of A1 for Fe without losing their crystal structure. Neutron diffraction has shown that the substitution of A1 atoms is not completely random but proceeds initially into mainly the 18h site, whereas substitutions into the 6c and 18f sites predominate at high A1 concentrations, with no A1 atoms going into the 9d site [1]. The ultimate Al concentration that can be reached in  $R_2Fe_{17-x}Al_x$ corresponds generally to about  $x = 10$  and there is only a relatively small reduction in the Fe atomic moments in these systems [2]. This favourable property has been employed in several investigations to tune the relative magnitudes of the rare earth and Fe sublattice magnetizations, so that information on the intersublattice interaction strength can be obtained from high field measurements [2-4].

In the present investigation, we have extended a previous investigation of the  $Gd_2Fe_{17-x}Al_x$  series to higher Fe concentration and focused our attention mainly on the changes in hyperfine parameters observed by means of <sup>155</sup>Gd Mössbauer spectroscopy.

# **2. Experimental details**

The  $Gd_2Fe_{17-x}Al_x$  compounds were prepared by arc melting from starting materials of at least 99.9% purity. They were vacuum annealed at 900 °C for four weeks and subsequently examined by X-ray diffraction to check whether or not single-phase compounds had formed. The rhombohedral  $Th_2Zn_{17}$ -type structure was observed for all samples with  $x \le 10$ . Magnetic measurements were made on a SQUID magnetometer in the temperature range  $4.2-600$  K.

The Mössbauer spectra of the various  $Gd_2Fe_{17-x}Al_x$ compounds were taken using the 86.5 keV resonance of  $^{155}$ Gd. The source was neutron-irradiated SmPd<sub>3</sub> prepared from Sm enriched to  $98\%$  in <sup>154</sup>Sm. Details of the spectrometer can be found elsewhere [5]. All the spectra have been analysed by means of a leastsquares fitting procedure involving the diagonalization of the full nuclear hamiltonian and using a transmission integral. The independently refined variables consisted of the isomer shift, the effective hyperfine field  $(H_{\text{eff}})$ and the quadrupole splitting

$$
QS = \frac{1}{4} eQV_{zz} (3 \cos^2 \theta - 1)
$$

using the value  $Q_g = 1.30 \times 10^{-28}$  m<sup>2</sup> given by Tanaka *et al.* [6]. The angle  $\theta$  between  $H_{\text{eff}}$  and the c axis was kept as an adjustable parameter. The line widths of the absorber and source were constrained to 0.25 and 0.36 mm  $s^{-1}$  for the transmission integral. These parameters have to be regarded as being averages over the distributions of hyperfine parameters associated with various types of different coordinations of the Gd sites by Fe and A1 atoms.

<sup>\*</sup>Present address: Corporate Research Hoogovens Groep BV, 1970 CA Ijmuiden, The Netherlands.

In some cases (for  $x=3$  and  $x=4$ ), slightly better fits were obtained by considering two subspectra  $$ one subspectrum with a positive value for the average electric field gradient and one subspectrum with a negative value. However, the intensity of the 'negative' subspectrum was much larger than that of the 'positive' subspectrum in both cases. For the sake of simplicity, and also to make a comparison of the hyperfine values obtained for various A1 concentrations easier, we chose to analyse all the spectra in the same way, discarding the possibility of two separate hyperfine distributions and using a single subspectrum in all cases for the fitting procedures.

## **3. Experimental results**

The substitution of Al for Fe in  $Gd_2Fe_{17}$  is accompanied by a substantial increase in the unit cell volume. This may be seen from Fig.  $1(a)$ , where the concentration dependence of the unit cell volume of  $Gd_2Fe_{17-x}Al_x$ has been plotted. The values of the unit cell volumes were derived from the corresponding lattice constants determined by X-ray diffraction.

From the temperature dependence of the magnetization  $\sigma$  measured in low applied fields (i.e.  $\mu_0 H =$ 0.05 T), we have determined the Curie temperatures by plotting  $\sigma^2$  vs. T and extrapolating to  $\sigma^2=0$ .



Fig. 1. (a) Concentration dependence of the unit cell volume in  $Gd_2Fe_{17-x}Al_x$  and (b) concentration dependence of the Curie temperature  $T_c$  and compensation temperature  $T_{comp}$ .

The concentration dependence of  $T_c$  is shown in Fig. l(b).

In a previous investigation of the magnetic properties of  $Gd_2Fe_{17-x}Al_x$  compounds in high magnetic fields, it has been shown that the Fe sublattice magnetization at 4.2 K is dominant for low  $x$  values but that, close to  $x=8$ , there is a change-over to a dominant Gd sublattice magnetization [4]. Examples of the temperature dependences of the magnetization of compounds close to  $x=8$  are shown in Fig. 2. The curve in Fig. 2(a) is a typical example for compounds in which the Gd sublattice magnetization dominates at low temperatures and where one may expect compensation temperatures  $T_{\text{comp}}$  between 4.2 K and  $T_c$ . (The concentration dependence of  $T_{\text{comp}}$  has been included in Fig. l(b).)

The <sup>155</sup> Gd Mössbauer spectra of various  $Gd_2Fe_{17-x}Al_x$ compounds are displayed in Fig. 3. The continuous lines through the data points represent fits. The corresponding hyperfine parameters have been listed in Table 1.

#### **4. Discussion**

The magnetic properties of the  $Gd_2Fe_{17-x}Al_x$  compounds closely resemble those found in other systems



Fig. 2. Temperature aependence of the magnetization of  $Gd_2Fe_{17-x}Al_x$  for (a)  $x = 7.0$ , (b)  $x = 7.8$  and (c)  $x = 8.0$  measured in  $\mu_0H=0.05$  T. Measurements were made after cooling the samples from 300 K to 4.2 K in a field of 1 T.



Fig. 3. Variation of the  $155Gd$  Mössbauer spectra at 4.2 K across the series  $Gd_2Fe_{17-x}Al_x$ . The curves through the data points represent fits to the spectra (see main text).

of the type  $R_2Fe_{17-x}Al_x$  [2-4]. The initial increase in  $T_c$  with the Al concentration is a result of the volume expansion, which is counteracted by the effect of magnetic dilution of the Fe sublattice. This dilution effect eventually becomes predominant and leads to a continuous decrease in  $T<sub>c</sub>$  up to the limit of the stability range of the  $Th_2Zn_{17}$ -type structure.

The comparatively low Curie temperature of the  $R_2Fe_{17}$  compounds frequently has been attributed to the rather small Fe-Fe interatomic distances associated with the 6c (dumbell) site in the  $Th_2Zn_{17}$  structure,

TABLE 1. Hyperfine parameters derived from fits of the <sup>155</sup>Gd Mössbauer spectra of various  $Gd_2Fe_{17-x}Al_x$  compounds having the rhombohedral  $Th<sub>2</sub>Zn<sub>17</sub>$  structure

| Composition<br>x | $V_{zz}$<br>$(10^{21} \text{ V m}^{-2})$ | $ B_{\text{eff}} $<br>(T) | IS<br>(mm $s^{-1}$ ) | θ<br>$(\text{deg})$ |
|------------------|------------------------------------------|---------------------------|----------------------|---------------------|
| $\boldsymbol{0}$ | $+4.4$                                   | 21                        | 0.27                 | 90                  |
| 3                | $-4.9$                                   | 7.3                       | 0.31                 | 90                  |
| 4                | $-5.0$                                   | 5.8                       | 0.31                 | 90                  |
| 6                | $-4.3$                                   | 6.1                       | 0.37                 | 90                  |
| 8                | $-3.8$                                   | 7.6                       | 0.40                 | 90                  |
| 9                | ±4.6                                     | 10.1                      | 0.41                 | 90                  |
| 10               | ±4.8                                     | 10.9                      | 0.42                 | 90                  |

The quantities listed are the composition  $x$ , electric field gradient  $V_{zz}$ , effective hyperfine field  $B_{\text{eff}}$ , isomer shift (IS) and angle  $\theta$ between  $V_{\nu}$  and  $B_{\text{eff}}$ .

which are supposed to favour antiferromagnetic exchange interactions and reduce  $T_c$ . It is tempting, therefore, to attribute increases in  $T_c$  in various  $R_2Fe_{17-x}T_r$  series to a preferential substitution of the element T into the 6c sites, which would remove the antiferromagnetic exchange interactions. However, recent results of neutron diffraction, performed on several compounds of the series  $Nd_2Fe_{17-x}Al_x$ , showed that the A1 atoms initially avoid the 6c sites [1]. A substantial occupation of the 6c site by A1 atoms occurs only for  $x > 5$ , which makes it unlikely that the initial increase in  $T_c$  is due to a substitution effect of AI into the dumbell sites.

From the hyperfine parameters listed in Table 1, it follows that the electric field gradient at the nuclear Gd site changes sign when Al substitution into  $Gd_2Fe_{17}$ takes place. Therefore, it is likely that a similar change in sign (from negative to positive) also occurs for the second-order crystal field parameter  $A_2^{\circ}$  in  $R_2Fe_{17-x}Al_x$ compounds. Furthermore, using the relationship

$$
K_1 = -\frac{3}{2} N \alpha_j \langle r^2 \rangle A_2^{\circ} \langle 3J_z^2 - J(J+1) \rangle
$$

one would expect that the rare earth sublattice anisotropy also changes its sign. In the equation,  $N$  represents the number of rare earth atoms,  $\alpha$ , the second order Stevens factor characteristic for a certain rare earth element, and  $\langle r^2 \rangle$  is the expectation value for  $\langle r_{4f}^2 \rangle$ . For instance, in the series  $R_2Fe_{17-x}Al_x$  ( $\alpha_i$  < 0 for  $R \equiv Pr$ , Nd, Tb, Dy, Ho), one expects the rare earth sublattice magnetization to have a preferred magnetization direction perpendicular to the  $c$  axis for small x values ( $V_{zz} > 0$ ;  $A_2^{\circ} < 0$ ;  $K_1 < 0$ ) but for it to be along a direction parallel to the  $c$  axis for larger  $x$  values  $(V_{zz}<0; A<sub>2</sub><sup>o</sup> > 0; K<sub>1</sub> > 0)$ . However, it is still an open question whether or not the rare earth sublattice anisotropy will be strong enough to overcompensate the Fe sublattice anisotropy, which favours an easy direction perpendicular to the c axis in the  $R_2Fe_{17}$  compounds. There are indications that the rare earth sublattice anisotropy is successful in this respect in the system  $Dy_2Fe_{17-x}Al_x$ , since Oesterreicher and McNeely [7] reported the observation of a strong coercivity  $(\mu_o H_c = 6.25 \text{ T})$  in Dy<sub>2</sub>Fe<sub>11</sub>Al<sub>8</sub>. Such strong coercivities can develop only in systems where the preferred magnetization direction is along the uniaxial direction.

The concentration dependence of the effective hyperfine field  $B_{\text{eff}}$  has been plotted in Fig. 4. Here, we have tacitly assumed that  $B_{\text{eff}}$  changes its sign for increasingx values. In a previous analysis of the hyperfine field in  $Gd_2Fe_{17}$ , it was shown that the total hyperfine field can be decomposed into various contributions of different sign and magnitude [8], *i.e.* 

$$
B_{\rm eff} = B_{\rm CP} + B_{\rm OP} + B_{\rm N}^{\rm 4f} + B_{\rm N}^{\rm 3d}
$$

where the core polarization  $(B_{CP})$  (as observed in insulators based on  $Gd^{3+}$  ions) equals  $-33.2$  T and where the contributions resulting from the polarization of the conduction electrons originate from the polarizing effect of the on-site Gd spin  $(B_{OP})$ , the neighbouring Gd spins  $(B<sub>N</sub><sup>4f</sup>)$  and the neighbouring Fe moments  $(B<sub>N</sub><sup>3d</sup>)$ . The contribution of the Fe moments predominates and equals  $B_N^{3d} = +50.2$  T, whereas the sum of the two Gd contributions is much smaller, *i.e.*  $B_{\text{OP}} + B_{\text{N}}^{4f} = +4.0$ T. Recent band structure calculations have largely confirmed the important role of the 6s conduction electrons in determining the hyperfine field in  $Gd_2Fe_{17}$ and other intermetallic compounds of Gd [9].

When forming compounds of the type  $Gd_2Fe_{17-x}Al_x$ , it will be clear that the 6s electron polarization resulting from the Fe moments (50.2 T) will gradually disappear. Indeed, this is suggested by the curve drawn through the data points in the lower curve in Fig. 4, the concave character of the curve being explained by the fact that,



Fig. 4. Concentration dependence of the isomer shift (IS) and effective <sup>155</sup>Gd hyperfine field  $B_{\text{eff}}$  in Gd<sub>2</sub>Fe<sub>17-x</sub>Al<sub>x</sub>.

apart from dilution of the Fe sublattice, there is also a small decrease in the size of the Fe moments with  $x$  [2].

The concentration dependence of the isomer shift (IS) has been plotted in the upper curve of Fig. 4. This behaviour may be compared with a simple model based on chemical effects (charge transfer and intraatomic s-d electron redistribution) and volume effects [10]. On the basis of this model, one expects that the ultimate value of the isomer shift that would be reached for  $x = 17$  is 0.52 mm s<sup>-1</sup>. There is satisfactory agreement between this value and that obtained by extrapolation of the upper curve shown in Fig. 4.

## **5. Conclusions**

In conclusion, we have studied the magnetic properties of the system  $Gd_2Fe_{17-x}Al_x$  and shown that the magnetic phase diagram of this system (as presented in Fig. 1(b)) is similar to that observed in other  $R_2Fe_{17-x}Al_x$  systems. From the quadrupolar splitting of the  $^{155}$ Gd Mössbauer spectra, we derived the sign and magnitude of the electric field gradient  $V_{zz}$  at the nuclear site and found that  $V_{zz}$  changes from positive to negative upon Al substitution into  $Gd_2Fe_{17}$ . We discussed the possibility that the corresponding sign change of the second-order crystal field parameter  $A_2^{\circ}$  can lead to a dominating rare earth sublattice anisotropy, with an easy  $c$  axis for R components with  $\alpha_i < 0$ . The variation of the Gd hyperfine field in  $Gd_2Fe_{17-x}Al_x$  was explained in terms of a reduced 6s electron polarization resulting from the Fe moments. The isomer shift was found to behave in good agreement with model predictions presented earlier.

## **References**

- 1 W. B. Yelon, H. Xie, G. J. Long, O. A. Pringle, F. Grandjean and K. H. J. Buschow, J. *Appl. Phys.,* in press.
- 2 T. H. Jacobs, K. H. J. Buschow, G. F. Zhou and F. R. de Boer, *Physica B, 179* (1992) 177.
- 3 T. H. Jacobs, K. H. J. Buschow, G. F. Zhou and F. R. de Boer, J. *Magn. Magn. Mater. 116* (1992) 220.
- 4 T. H. Jacobs, K. H. J. Buschow, G. F. Zhou, J. P. Liu, X. Li and F. R. de Boer, J. *Magn. Magn. Mater, 104-107* (1992) 1275.
- 5 H. de Graaf, *Thesis,* University of Leiden, 1982.
- 6 Y. Tanaka, O. B. Laubacher, R. M. Stoffen, E. B. Shera, H.D. Wohlfarth and M.v. Hoehn, *Phys. Lett. B, 108* (1982) 8.
- 7 H. Oesterreicher and D. McNeely, J. Less-Common Met., 53 (1977) 216.
- 8 F. J. van Steenwijk, H. Th. LeFever, R. C. Thiel and K. H. J. Busehow, *Physica B, 92* (1977) 52.
- 9 R. Coehoorn and K. H. J. Buschow, J. *Magn. Magn. Mater., 118* (1993) 175.
- 10 J. W. C. de Vries, R. C. Thiel and K. H. J. Buschow, J. *Phys. F, 15* (1985) 1413.